Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Role of Physical Environment on Molecular Electromechanical Switching

Identifieur interne : 000325 ( Main/Exploration ); précédent : 000324; suivant : 000326

The Role of Physical Environment on Molecular Electromechanical Switching

Auteurs : Amar H. Flood ; Andrea J. Peters ; Scott A. Vignon ; David W. Steuerman ; Hsian-Rong Tseng ; Seogshin Kang ; James R. Heath [États-Unis] ; J. Fraser Stoddart [États-Unis]

Source :

RBID : ISTEX:1D6A24F6DCCFD0681158B8382D604586665FC5BC

English descriptors

Abstract

The influences of different physical environments on the thermodynamics associated with one key step in the switching mechanism for a pair of bistable catenanes and a pair of bistable rotaxanes have been investigated systematically. The two bistable catenanes are comprised of a cyclobis(paraquat‐p‐phenylene) (CBPQT4+) ring, or its diazapyrenium‐containing analogue, that are interlocked with a macrocyclic polyether component that incorporates the strong tetrathiafulvalene (TTF) donor unit and the weaker 1,5‐dioxynaphthalene (DNP) donor unit. The two bistable rotaxanes are comprised of a CBPQT4+ ring, interlocked with a dumbbell component in which one incorporates TTF and DNP units, whereas the other incorporates a monopyrrolotetrathiafulvalene (MPTTF) donor and a DNP unit. Two consecutive cycles of a variable scan rate cyclic voltammogram (10–1500 mV s−1) performed on all of the bistable switches (∼1 mM) in MeCN electrolyte solutions (0.1 M tetrabutylammonium hexafluorophosphate) across a range of temperatures (258–303 K) were recorded in a temperature‐controlled electrochemical cell. The second cycle showed different intensities of the two features that were observed in the first cycle when the cyclic voltammetry was recorded at fast scan rates and low temperatures. The first oxidation peak increases in intensity, concomitant with a decrease in the intensity of the second oxidation peak. This variation changed systematically with scan rate and temperature and has been assigned to the molecular mechanical movements within the catenanes and rotaxanes of the CBPQT4+ ring from the DNP to the TTF unit. The intensities of each peak were assigned to the populations of each co‐conformation, and the scan‐rate variation of each population was analyzed to obtain kinetic and thermodynamic data for the movement of the CBPQT4+ ring. The Gibbs free energy of activation at 298 K for the thermally activated movement was calculated to be 16.2 kcal mol−1 for the rotaxane, and 16.7 and 19.2 kcal mol−1 for the bipyridinium‐ and diazapyrenium‐based bistable catenanes, respectively. These values differ from those obtained for the shuttling and circumrotational motions of degenerate rotaxanes and catenanes, respectively, indicating that the detailed chemical structure influences the rates of movement. In all cases, when the same bistable compounds were characterized in an electrolyte gel, the molecular mechanical motion slowed down significantly, concomitant with an increase in the activation barriers by more than 2 kcal mol−1. Irrespective of the environment—solution, self‐assembled monolayer or solid‐state polymer gel—and of the molecular structure—rotaxane or catenane—a single and generic switching mechanism is observed for all bistable molecules.

Url:
DOI: 10.1002/chem.200401052


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Role of Physical Environment on Molecular Electromechanical Switching</title>
<author>
<name sortKey="Flood, Amar H" sort="Flood, Amar H" uniqKey="Flood A" first="Amar H." last="Flood">Amar H. Flood</name>
</author>
<author>
<name sortKey="Peters, Andrea J" sort="Peters, Andrea J" uniqKey="Peters A" first="Andrea J." last="Peters">Andrea J. Peters</name>
</author>
<author>
<name sortKey="Vignon, Scott A" sort="Vignon, Scott A" uniqKey="Vignon S" first="Scott A." last="Vignon">Scott A. Vignon</name>
</author>
<author>
<name sortKey="Steuerman, David W" sort="Steuerman, David W" uniqKey="Steuerman D" first="David W." last="Steuerman">David W. Steuerman</name>
</author>
<author>
<name sortKey="Tseng, Hsian Ong" sort="Tseng, Hsian Ong" uniqKey="Tseng H" first="Hsian-Rong" last="Tseng">Hsian-Rong Tseng</name>
</author>
<author>
<name sortKey="Kang, Seogshin" sort="Kang, Seogshin" uniqKey="Kang S" first="Seogshin" last="Kang">Seogshin Kang</name>
</author>
<author>
<name sortKey="Heath, James R" sort="Heath, James R" uniqKey="Heath J" first="James R." last="Heath">James R. Heath</name>
</author>
<author>
<name sortKey="Stoddart, J Fraser" sort="Stoddart, J Fraser" uniqKey="Stoddart J" first="J. Fraser" last="Stoddart">J. Fraser Stoddart</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1D6A24F6DCCFD0681158B8382D604586665FC5BC</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/chem.200401052</idno>
<idno type="url">https://api.istex.fr/document/1D6A24F6DCCFD0681158B8382D604586665FC5BC/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000838</idno>
<idno type="wicri:Area/Main/Curation">000838</idno>
<idno type="wicri:Area/Main/Exploration">000325</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000325</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The Role of Physical Environment on Molecular Electromechanical Switching</title>
<author>
<name sortKey="Flood, Amar H" sort="Flood, Amar H" uniqKey="Flood A" first="Amar H." last="Flood">Amar H. Flood</name>
<affiliation>
<wicri:noCountry code="subField">(+1) 310‐206‐1843</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Peters, Andrea J" sort="Peters, Andrea J" uniqKey="Peters A" first="Andrea J." last="Peters">Andrea J. Peters</name>
<affiliation>
<wicri:noCountry code="subField">(+1) 310‐206‐1843</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vignon, Scott A" sort="Vignon, Scott A" uniqKey="Vignon S" first="Scott A." last="Vignon">Scott A. Vignon</name>
<affiliation>
<wicri:noCountry code="subField">(+1) 310‐206‐1843</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Steuerman, David W" sort="Steuerman, David W" uniqKey="Steuerman D" first="David W." last="Steuerman">David W. Steuerman</name>
<affiliation>
<wicri:noCountry code="subField">(+1) 310‐206‐4038</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Hsian Ong" sort="Tseng, Hsian Ong" uniqKey="Tseng H" first="Hsian-Rong" last="Tseng">Hsian-Rong Tseng</name>
<affiliation>
<wicri:noCountry code="subField">(+1) 310‐206‐1843</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kang, Seogshin" sort="Kang, Seogshin" uniqKey="Kang S" first="Seogshin" last="Kang">Seogshin Kang</name>
<affiliation>
<wicri:noCountry code="subField">(+1) 310‐206‐1843</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Heath, James R" sort="Heath, James R" uniqKey="Heath J" first="James R." last="Heath">James R. Heath</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Stoddart, J Fraser" sort="Stoddart, J Fraser" uniqKey="Stoddart J" first="J. Fraser" last="Stoddart">J. Fraser Stoddart</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemistry – A European Journal</title>
<title level="j" type="abbrev">Chemistry – A European Journal</title>
<idno type="ISSN">0947-6539</idno>
<idno type="eISSN">1521-3765</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2004-12-17">2004-12-17</date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">24</biblScope>
<biblScope unit="page" from="6558">6558</biblScope>
<biblScope unit="page" to="6564">6564</biblScope>
</imprint>
<idno type="ISSN">0947-6539</idno>
</series>
<idno type="istex">1D6A24F6DCCFD0681158B8382D604586665FC5BC</idno>
<idno type="DOI">10.1002/chem.200401052</idno>
<idno type="ArticleID">CHEM200401052</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0947-6539</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>NMR spectroscopy</term>
<term>bistability</term>
<term>catenanes</term>
<term>electrochemistry</term>
<term>metastability</term>
<term>rotaxanes</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The influences of different physical environments on the thermodynamics associated with one key step in the switching mechanism for a pair of bistable catenanes and a pair of bistable rotaxanes have been investigated systematically. The two bistable catenanes are comprised of a cyclobis(paraquat‐p‐phenylene) (CBPQT4+) ring, or its diazapyrenium‐containing analogue, that are interlocked with a macrocyclic polyether component that incorporates the strong tetrathiafulvalene (TTF) donor unit and the weaker 1,5‐dioxynaphthalene (DNP) donor unit. The two bistable rotaxanes are comprised of a CBPQT4+ ring, interlocked with a dumbbell component in which one incorporates TTF and DNP units, whereas the other incorporates a monopyrrolotetrathiafulvalene (MPTTF) donor and a DNP unit. Two consecutive cycles of a variable scan rate cyclic voltammogram (10–1500 mV s−1) performed on all of the bistable switches (∼1 mM) in MeCN electrolyte solutions (0.1 M tetrabutylammonium hexafluorophosphate) across a range of temperatures (258–303 K) were recorded in a temperature‐controlled electrochemical cell. The second cycle showed different intensities of the two features that were observed in the first cycle when the cyclic voltammetry was recorded at fast scan rates and low temperatures. The first oxidation peak increases in intensity, concomitant with a decrease in the intensity of the second oxidation peak. This variation changed systematically with scan rate and temperature and has been assigned to the molecular mechanical movements within the catenanes and rotaxanes of the CBPQT4+ ring from the DNP to the TTF unit. The intensities of each peak were assigned to the populations of each co‐conformation, and the scan‐rate variation of each population was analyzed to obtain kinetic and thermodynamic data for the movement of the CBPQT4+ ring. The Gibbs free energy of activation at 298 K for the thermally activated movement was calculated to be 16.2 kcal mol−1 for the rotaxane, and 16.7 and 19.2 kcal mol−1 for the bipyridinium‐ and diazapyrenium‐based bistable catenanes, respectively. These values differ from those obtained for the shuttling and circumrotational motions of degenerate rotaxanes and catenanes, respectively, indicating that the detailed chemical structure influences the rates of movement. In all cases, when the same bistable compounds were characterized in an electrolyte gel, the molecular mechanical motion slowed down significantly, concomitant with an increase in the activation barriers by more than 2 kcal mol−1. Irrespective of the environment—solution, self‐assembled monolayer or solid‐state polymer gel—and of the molecular structure—rotaxane or catenane—a single and generic switching mechanism is observed for all bistable molecules.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Flood, Amar H" sort="Flood, Amar H" uniqKey="Flood A" first="Amar H." last="Flood">Amar H. Flood</name>
<name sortKey="Kang, Seogshin" sort="Kang, Seogshin" uniqKey="Kang S" first="Seogshin" last="Kang">Seogshin Kang</name>
<name sortKey="Peters, Andrea J" sort="Peters, Andrea J" uniqKey="Peters A" first="Andrea J." last="Peters">Andrea J. Peters</name>
<name sortKey="Steuerman, David W" sort="Steuerman, David W" uniqKey="Steuerman D" first="David W." last="Steuerman">David W. Steuerman</name>
<name sortKey="Tseng, Hsian Ong" sort="Tseng, Hsian Ong" uniqKey="Tseng H" first="Hsian-Rong" last="Tseng">Hsian-Rong Tseng</name>
<name sortKey="Vignon, Scott A" sort="Vignon, Scott A" uniqKey="Vignon S" first="Scott A." last="Vignon">Scott A. Vignon</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Heath, James R" sort="Heath, James R" uniqKey="Heath J" first="James R." last="Heath">James R. Heath</name>
</noRegion>
<name sortKey="Stoddart, J Fraser" sort="Stoddart, J Fraser" uniqKey="Stoddart J" first="J. Fraser" last="Stoddart">J. Fraser Stoddart</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000325 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000325 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:1D6A24F6DCCFD0681158B8382D604586665FC5BC
   |texte=   The Role of Physical Environment on Molecular Electromechanical Switching
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024